Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

On stability of difference equations in partially ordered spaces

Annotation

We consider implicit difference equations in partially ordered spaces. We define the notion of a stable equilibrium point. The conditions of the stability is obtained. The study is based on the theory of partially ordered mappings.

Keywords

implicit difference equation; stable equilibrium point; partially ordered space; partially ordered mapping

Full-text in one file

Download

DOI

10.20310/1810-0198-2018-23-123-386-394

UDC

517.962.24

Pages

386-394

References

1. Elaydi S. An Untroduction to Difference Equations. New York, Springer-Verlag, 2005, 540 p. 2. Braverman E., Zhukovskiy S.E. On stability and oscillation of equations with a distributed delay which can be reduced to difference equations. Electronic Journal of Differential Equations, 2008, no. 112, pp. 1-16. 3. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Coincidence points principle for mappings in partially ordered spaces. Topology and its Applications, 2015, vol. 179, no. 1, pp. 13-33. 4. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. O tochkakh sovpadeniya otobrazheniy v chastichno uporyadochennykh prostranstvakh [On coincidence points in partially ordered spaces]. Doklady Akademii nauk – Proceedings of the Russian Academy of Sciences, 2013, vol. 453, no. 5, pp. 475-478. (In Russian). 5. Zhukovskiy E.S. Ob uporyadochenno nakryvayushchikh otobrazheniyakh i integral’nykh neravenstvakh tipa Chaplygina [About orderly covering mappings and Chaplygin’s type integral inequalities]. Algebra i analiz – St. Petersburg Mathematical Journal, 2018, vol. 30, no. 1, pp. 96-127. (In Russian). 6. Zhukovskiy E.S. Ob uporyadochenno nakryvayushchikh otobrazheniyakh i neyavnykh differentsial’nykh neravenstvakh [On ordered-covering mappings and implicit differential inequalities]. Differentsial’nye uravneniya – Differential Equations, 2016, vol. 52, no. 12, pp. 1610-1627. (In Russian). 7. Arutyunov A., Zhukovskiy S., Pereira F. Solvability of implicit difference equations. Lecture Notes in Electrical Engineering, 2015, vol. 321, pp. 23-28. 8. Zhukovskiy S.E. Prilozheniye nakryvayushchikh otobrazheniy k raznostnym uravneniyam [Application of covering mappings to difference equations]. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2011, vol. 16, no. 4, pp. 1085-1086. (In Russian). 9. Zhukovskiy E.S., Zabrodskiy I.A., Shindyapin A.I. O periodicheskikh resheniyakh neyavnykh raznostnykh uravneniy [Periodic solutions of implicit differential equations]. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2015, vol. 20, no. 5, pp. 1142-1146. (In Russian). 10. Zabrodskiy I.A., Kuzyakina A.S. Ob eksponentsial’noy ustoychivosti neyavnykh raznostnykh uravneniy [Exponential stability of implicit difference equations]. Vestnik Tambovskogo universiteta. Seriya: Estestvennye i tekhnicheskie nauki – Tambov University Reports. Series: Natural and Technical Sciences, 2015, vol. 20, no. 5, pp. 1156-1160. (In Russian). 11. Arutyunov A.V. Nakryvayushchiye otobrazheniya v metricheskikh prostranstvakh i nepodvizhnyye tochki [Covering mappings in metric spaces and fixed points]. Doklady Akademii nauk – Proceedings of the Russian Academy of Sciences, 2007, vol. 416, no. 2, pp. 151-155. (In Russian). 12. Avakov E.R., Arutyunov A.V., Zhukovskiy E.S. Nakryvayushchiye otobrazheniya i ikh prilozheniya k differentsial’nym uravneniyam, ne razreshennym otnositel’no proizvodnoy [Covering mappings and their applications to differential equations unsolved for the derivative]. Differentsial’nye uravneniya – Differential Equations, 2009, vol. 45, no. 5, pp. 613-634. (In Russian). 13. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. Covering mappings and well-posedness of nonlinear Volterra equations. Nonlinear Analysis: Theory, Methods and Applications, 2012, vol. 75, no. 3, pp. 1026-1044. 14. Arutyunov A.V., Zhukovskiy E.S., Zhukovskiy S.E. O korrektnosti differentsial’nykh uravneniy, ne razreshennykh otnositel’no proizvodnoy [On the well-posedness of differential equations unsolved for the derivative]. Differentsial’nye uravneniya – Differential Equations, 2011, vol. 47, no. 11, pp. 1523-1537. (In Russian).

Received

2018-04-16

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.