Menu: Home :: go to Journal :: switch to Russian :: switch to English
You are here: all Journals and Issues→ Journal→ Issue→ Article

Stability of one-parameter systems of linear autonomous differential equations with bounded delay

Annotation

We consider a system of linear autonomous differential equations with bounded delay in the case when its characteristic function depends linearly on one scalar parameter. The application of the D-subdivision method to the problem of constructing the stability region for this equation was developed.

Keywords

delay differential equations; autonomous equations; asymptotic stability; D-subdivision method

Full-text in one file

Download

DOI

10.20310/1810-0198-2018-23-123-488-502

UDC

517.929

Pages

488-502

References

1. Azbelev N.V., Maksimov V.P., Rakhmatullina L.F. Vvedenie v teoriyu funktsional’no-differentsial’nykh uravneniy [Introduction to the Theory of Functional-Differential Equations]. Moscow, Nauka Publ., 1991, 280 p. (In Russian). 2. Azbelev N.V., Simonov P.M. Ustoychivost’ resheniy uravneniy s obyknovennymi proizvodnymi [Stability of Solutions of the Equations with Ordinary Derivatives]. Perm, Perm State University Publ., 2001, 230 p. (In Russian). 3. Azbelev N.V., Simonov P.M. Ustoychivost’ uravneniy s zapazdyvayushchim argumentom [Stability of equations with delayed argument]. Izvestiya vysshikh uchebnykh zavedeniy. Matematika – Russian Mathematics, 1997, no. 6, pp. 3-16. (In Russian). 4. Myshkis A.D. Lineynye differentsial’nye uravneniya s zapazdyvayushchim argumentom [Linear Differential Equations with Delayed Argument]. Moscow, Nauka Publ., 1972, 351 p. (In Russian). 5. Postnikov M.M. Ustoychivye mnogochleny [Stable Polynomials]. Moscow, Editorial URSS, 2004, 176 p. (In Russian). 6. Pontryagin L.S. O nulyakh nekotorykh elementarnykh transtsendentnykh funktsiy [On zeros of some transcendental functions]. Izvestiya Rossiyskoy akademii nauk. Seriya matematicheskaya – Izvestiya: Mathematics, 1942, vol. 6, no. 3, pp. 115-134. (In Russian). 7. Meyman N.N., Chebotarev N.G. Problema Rausa–Gurvitsa dlya polinomov i tselykh funktsiy [The Routh–Hurwitz problem for polynomials and entire functions]. Trudy Matematicheskogo instituta im. V.A. Steklova AN SSSR – Proceedings of the Steklov Institute of Mathematics, 1949, no. 26, pp. 3-331. (In Russian). 8. Mikhaylov A.V. Metod garmonicheskogo analiza v teorii regulirovaniya [Method of harmonic analysis in control theory]. Avtomatika i telemekhanika – Automation and Remote Control, 1938, no. 3, pp. 27-81. (In Russian). 9. Neymark Yu.I. Ustoychivost’ linearizovannykh sistem (diskretnykh i raspredelennykh) [Stability of Linearized Systems (Discrete and Distributed)]. Leningrad, Leningrad Holding the Order of the Red Banner Air Force Engineering Academy Publ., 1949, 140 p. (In Russian). 10. Mulyukov M.V. Struktura oblastey D-razbieniya dlya dvuparametricheskikh kharakteristicheskikh uravneniy sistem s zapazdyvaniem [Structure of the D-subdivision domains for the twoparameter characteristic equations of systems with delay]. Materialy konferentsii «Funktsional’nodifferentsial’nye uravneniya: teoriya i prilozheniya», posvyashchennoy 95-letiyu so dnya rozhdeniya professora N.V. Azbeleva [Proceedings of the Conference “Functional-Differential Equiations: Theory and Applications” Dedicated to the 95th Anniversary of Professor N.V. Azbelev]. Perm, 2018, pp. 180-200. (In Russian). 11. Mulyukov M.V. Oblasti D-razbieniya s pryamolineynymi granitsami [D-subdivision domains with straight bounds]. Tezisy dokladov Mezhdunarodnoy konferentsii «Matematika v sovremennom mire» [Proceedings of the All-Russian Conference “Mathematics in the ModernWorld”]. Novosibirsk, 2017, p. 233. 12. Mulyukov M.V. Classification of Two-Parameter Autonomous Linear Systems with Delay. Journal of Mathematical Sciences, 2018, vol. 230, no. 5, pp.724-727. DOI10.1007/s10958-018-3777-1. 13. Lankaster P. The Theory of Matrices. New York, Academic Press, 1969, 316 p. 14. Markushevich A.I. Tselye funktsii. Elementarnyy ocherk [Entire Functions. Elementary Essay]. Moscow, Nauka Publ., 1975, 120 p. (In Russian). 15. Trenogin V.A. Funktsional’nyy analiz [Functional Analysis]. Moscow, Fizmatlit Publ., 2007, 488 p. (In Russian). 16. Stepan G. Retarded Dynamical Systems: Stability and Characteristic Functions. New York, John Wiley & Sons, 1989, 151 p. 17. Hassard B.D., Kazarinoff N.D., Wan T.-H. Theory and Applications of Hopf Bifurcation. Cambridge, Cambridge University Press, 1981. 18. Vagina M.Yu. Logisticheskaya model’ s zapazdyvayushchim usredneniem [A Delay-Averaged Logistic Model]. Avtomatika i telemekhanika – Automation and Remote Control, 2003, no. 4, pp. 167-173. (In Russian).

Received

2018-04-20

Section of issue

Scientific articles

Для корректной работы сайта используйте один из современных браузеров. Например, Firefox 55, Chrome 60 или более новые.